Useful Java Collections

Nathaniel Osgood
MIT 15.879

May 9, 2012

Java.util Collection Hierarchies

Iterable<E> | (Iféfatpr<£?-
Collection<E> " ListIterator<t>’

¥ A “v,‘_‘ """""

Set<E; Quedé<E> , ‘ LisiéES

s A S N
i g \‘PEnumSet<E> *\' "‘-‘_:::Arraytist<E>
" SortedSet<E>)] HashSet<E> PriorityQueue<E> “-LinkedList<E>

i

TreeSet<E> LinkedHashSet<E>

-MaprSV%\
7 AhYe
: 25 . ~ EnumMap<K, V>
_SortedMap<K, V> . WeakHashMap<K, V>
A HashMap<K,V>

TreeMap<K, V> LinkedHa§hMap<K.V>

Collection Objects in AnyLogic

i AnyLogic University [EDUCATIONAL USE ONLY]
File Edit “iew Draw Model Tools Help

3 .
% Projects E3 l

e @ MonteCarlo2DHistogram: Main
E|--- SIR Agert Based

& simulation: Main
=% NDOAdaptedCwD

€9 Deer

ﬂ [4ain

@ Deeriroup

@ GroupingProperties
@ MyPaint

@ simulation: Main
-3 diverseWaterSources: Main
S5 ABMModelwithBirthDeath
ﬂ [4ain

ﬂ Person

(1) TAgentAction

o IAgentSpecification
O Mainaction

-3 Simulation: Main

-
[Zll Problems 53 l & Search| ¥ =0
Mo problems
| Descripkion | Location

<]

& Person 3 l

() colar
() circlesize

() circlesize

(7 reportChildren

@children

Infectionstatechar]
() colorForRelation

() causeError

[e e e e e e e I e

ERL

FTAE mu s

0 dictLastTimeInfectedForPerson
0 dictLastTimeE xposedForPerson
0 dictallTimesInfectedForPerson

(7 getPersonhame

() striiame

Susceptible

Death

@ isInitiallyInfected O s

(3 ethnicity
@ mother

G FertilityRatedgeSexEthnicity
(7 Performirth

PregnancyStatus

MNonPregnant

(3 Randomsex

() nextidFortewPerson

) appearanceTime

(# Tnitialége

(3 CurrentAge

(3 FinalizeDeath

G EstablishOfFspringConnectionsBasedOnMothersConnections
G EstablishOfFspringlocationBasedGniMothersLocation

el

General

Description

Kl
W El consale |

%% children - Collection

Marne: children

| show name [Ignore Shaw at runtime

Access: O static [save in snapshat

Collection class: jarea, util, ArrayLisk

Lkl Ay
java.util, LinkedList
java.util. HashSet —
java.util,LinkedHashset

java.util, TreeSet i

Elements class:

|5 &

Informal Collection Variables in
AnyLogic

;"‘-" AnyLogic University [EDUCATIONAL USE ONLY] - |5 |5|
File Edit Yiew Draw Model Tools Help

%o Projects Kgl = O || @) Person Kgl =0

€% MonkeCarlozDHistogram: Main ;I ;I
=) @ SIR Agent Based

G reportAllTimesInfectedForPersons

€3 Simulation: Main G savelnfectionHistaryInformation
E‘@ MDOAdaptedCW D () saveExposureandinfectioniessagelnformation
6 Deer _(‘\ e raportLast TimelnfactadEorRarsan: e getAndlncremantiext IdF o e a
¥ Main L

@dictLastTimeInfectedForPerson 0 nextIdFarMewPersan
0 dictLast TimeExposedForPerson
() dictalTimesInfectedForPerson (3 g=tPersontlame

() strilame

G DieerGraup
-@ GroupingProperties 0 colar
@ MyPoint
3 Simulation: Main 0 circlesize
3 diverseWaterSources: Main
=6 ABMModelWithBirthDeath () circleSize
; ¥ Main I
43 Person Infectionstatechar

‘O 1ngentaction (3 colorForRelation]
0 IagentSpecification 0 appearanceTime

D Mainaction @ isInitiallyInfected @ 5% @ Initialfge

Susceptible

Death

3 Simulation: Main il
= @ ethnicity (3 Currentage
G causeErrar Pregnancy3tatus th
Ty -+, =
[Z Problems £2 l 5 Search| i i @ FAatRSE () FinslizeDeath
Mo problemns

MonPregnank
B FertilityRateAgeSexEthnicity

| Description Lacation 3 roroet hildeon £ DarformBirth | _ILI
] I 3

i) 8 oo | il

0 dictLastTimelnfectedForPerson - Yariable

]
General Mame: dictLastTimelnFectedForPersan | show name [Ignore Shaw at runtime
Description
Arcess: [static [0 constant [Sawe in snapshor
Type: QOboolean Ot O double O string & Other: | Hashtable<Person, Do
Tnitial value: | new Hashtable<Person,Doubles:()

DUseUnits Unik: | |

Useful Collections

Array

ArraylList

Linked list

Dictionary (e.g. implementation: HashTable)
Set

Priority queue

Binary Tree

Common Characteristics
Capacity to store information

lteration thru elements (support for lterable interface)

Separation of interface from implementation

— There are often several particular “implementations” that
can atch a given interface (contract)

* These differ in the details of “how” they accomplish the tasks
prescribed in the implementation, but adhere to the contract

— You can create your own implementation of an imterface
Java supports built-in rich set of collections

— Java.collections

Many collections use generics syntax to allow for
“customized versions” for particular contents

— e.g. Arraylist<Person>, HashMap<String,Person>

— Note that these “generics” parameters must be classes!

Built-in Java Arrays

Allocated via (explicit or implicit) new operator
Can optionally list initial contents

Can contain both “unboxed” (e.g. int) and “boxed”
(e.g. Integer) contents

Syntax Examples

int arrayNeighborindices[] = new int[n];

String arrayCities[] = { “Bangor”, “Portland”,
“Mooselookmeguntic” };

Note that can have array of size O

Java Arrays: Tradeoffs

* Pros
— Can easily specify initial contents
— Simple syntax
— Boxed & unboxed elements
— Fast lookup (by index)

e Cons

— Painful to extend or delete elements(need to
manually copy elements)

— Only integer (int, short) indices

ArraylList
Generic class
— Syntax: Arraylist<int>, ArrayList<String>

Pros
— Rapid insertion & deletion
— Convenient integer-based indexing

Note that can have empty ArrayList
Combines good aspects of

— Array
— Linked list

Suggestion: Use a built-in array if you know the size
ahead of time

Linked List

A sequential list of elements of arbitrary length
Can iterate forward down list

This is a Doubly Linked List

— can iterate backwards in list (from end back to
beginning)

Be prepared for potential empty list!

Application example: Linked List of History

Information, Persons who have been infected, in
order of infection occurence

Dictionary (Hashtable and HashMap as

Implementation)
* |If key is the same as value, can be used to implement
“content-indexed memory” (and “associative arrays”)
— Cf:

* Array: Look up content at integer

e Dictionary: Can lookup many types of keys
— e.g. look up information associated with String

 Example use of generics: HashMap<String,Person>,
Hashtable<String,ArraylList<Person> >

* Two associated collections
— Keys
— Values
— (each key can be used to look up an associated vale)

Hashtable and HashMap

Implementation of Map
* Pros

— Rapid insertions (flexible size)
— Can readily inset items by associated information

* Cons

— Low bucket count => Risk of clashes between keys =>
longer time for insertions
* If too few “buckets”, performance can grow similar to linked list

— Larger data structure (“wasted space” in the form of
empty buckets if load factor is off)

* Application Example: Look up City Characteristics
for Names

Hashtable vs. HashMap

* Tolerance for null
— Hashtable prohibits null keys & values

— HashMap allows
* One null key
* Many null values

 HashMap has a subclass with a predictable order of
Iteration

 HashMap and Hashtable also differ with respect to
multithreading support (beyond scope of course)

Set

Dichotomous inclusion/omission

— .contains

No ordering of elements

— Cannot tell if A was inserted before B or vice-versa

Set operations

— Union (.addAll())

— Intersection (.retainAll())

— (Assymetric) Set difference (.removeAll())

Example: Keeping track of Persons that have been
infected thus far

Priority Queue

For a given priority level, this is first-in-first-out
— First inserted is first to reach “head” of queue

Can prioritize according to arbitrary comparator

— Like “first class” vs. “economy” lane, those with higher
priority can “skip ahead” of those with lower priority

A key use lies in representing a waiting list

Getting element at head

— Call to poll() (returns reference to element and removes
from head of queue)

— Call to peek() (returns reference to item at queue head)

Building Your Own Collections

* Java developers routinely create novel “data
structures”, including some collections

e Often these data structures are composed of pieces
using the above-described (“built-in”) collections

* |f you build your own collections, be aware that
care should be taken in several areas

— Need to be careful about passing out references to
values from the collection, in case they can be modified

— Need to be careful about storing away references to
external values, since this might allow external code to

(typically, inadvertently) modify the data structure
internals

