
Useful Java Collections

Nathaniel Osgood

MIT 15.879

May 9, 2012

Java.util Collection Hierarchies

Collection Objects in AnyLogic

Informal Collection Variables in
AnyLogic

Useful Collections

• Array

• ArrayList

• Linked list

• Dictionary (e.g. implementation: HashTable)

• Set

• Priority queue

• Binary Tree

Common Characteristics
• Capacity to store information

• Iteration thru elements (support for Iterable interface)

• Separation of interface from implementation
– There are often several particular “implementations” that

can atch a given interface (contract)
• These differ in the details of “how” they accomplish the tasks

prescribed in the implementation, but adhere to the contract

– You can create your own implementation of an imterface

• Java supports built-in rich set of collections
– Java.collections

• Many collections use generics syntax to allow for
“customized versions” for particular contents
– e.g. ArrayList<Person>, HashMap<String,Person>

– Note that these “generics” parameters must be classes!

Built-in Java Arrays

• Allocated via (explicit or implicit) new operator

• Can optionally list initial contents

• Can contain both “unboxed” (e.g. int) and “boxed”
(e.g. Integer) contents

• Syntax Examples

int arrayNeighborIndices[] = new int[n];

String arrayCities[] = { “Bangor”, “Portland”,
“Mooselookmeguntic” };

• Note that can have array of size 0

Java Arrays: Tradeoffs

• Pros
– Can easily specify initial contents

– Simple syntax

– Boxed & unboxed elements

– Fast lookup (by index)

• Cons
– Painful to extend or delete elements(need to

manually copy elements)

– Only integer (int, short) indices

ArrayList
• Generic class

– Syntax: ArrayList<Int>, ArrayList<String>

• Pros
– Rapid insertion & deletion

– Convenient integer-based indexing

• Note that can have empty ArrayList

• Combines good aspects of
– Array

– Linked list

• Suggestion: Use a built-in array if you know the size
ahead of time

Linked List

• A sequential list of elements of arbitrary length

• Can iterate forward down list

• This is a Doubly Linked List

– can iterate backwards in list (from end back to
beginning)

• Be prepared for potential empty list!

• Application example: Linked List of History
Information, Persons who have been infected, in
order of infection occurence

Dictionary (Hashtable and HashMap as
Implementation)

• If key is the same as value, can be used to implement
“content-indexed memory” (and “associative arrays”)
– Cf:

• Array: Look up content at integer

• Dictionary: Can lookup many types of keys
– e.g. look up information associated with String

• Example use of generics: HashMap<String,Person>,
Hashtable<String,ArrayList<Person> >

• Two associated collections
– Keys

– Values

– (each key can be used to look up an associated vale)

Hashtable and HashMap
Implementation of Map

• Pros
– Rapid insertions (flexible size)

– Can readily inset items by associated information

• Cons
– Low bucket count => Risk of clashes between keys =>

longer time for insertions
• If too few “buckets”, performance can grow similar to linked list

– Larger data structure (“wasted space” in the form of
empty buckets if load factor is off)

• Application Example: Look up City Characteristics
for Names

Hashtable vs. HashMap

• Tolerance for null

– Hashtable prohibits null keys & values

– HashMap allows

• One null key

• Many null values

• HashMap has a subclass with a predictable order of
iteration

• HashMap and Hashtable also differ with respect to
multithreading support (beyond scope of course)

Set

• Dichotomous inclusion/omission

– .contains

• No ordering of elements

– Cannot tell if A was inserted before B or vice-versa

• Set operations

– Union (.addAll())

– Intersection (.retainAll())

– (Assymetric) Set difference (.removeAll())

• Example: Keeping track of Persons that have been
infected thus far

Priority Queue

• For a given priority level, this is first-in-first-out

– First inserted is first to reach “head” of queue

• Can prioritize according to arbitrary comparator

– Like “first class” vs. “economy” lane, those with higher
priority can “skip ahead” of those with lower priority

• A key use lies in representing a waiting list

• Getting element at head

– Call to poll() (returns reference to element and removes
from head of queue)

– Call to peek() (returns reference to item at queue head)

Building Your Own Collections
• Java developers routinely create novel “data

structures”, including some collections

• Often these data structures are composed of pieces
using the above-described (“built-in”) collections

• If you build your own collections, be aware that
care should be taken in several areas

– Need to be careful about passing out references to
values from the collection, in case they can be modified

– Need to be careful about storing away references to
external values, since this might allow external code to
(typically, inadvertently) modify the data structure
internals

